By Topic

Where are linear feature extraction methods applicable?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Martinez, A.M. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Zhu, Manli

A fundamental problem in computer vision and pattern recognition is to determine where and, most importantly, why a given technique is applicable. This is not only necessary because it helps us decide which techniques to apply at each given time. Knowing why current algorithms cannot be applied facilitates the design of new algorithms robust to such problems. In this paper, we report on a theoretical study that demonstrates where and why generalized eigen-based linear equations do not work. In particular, we show that when the smallest angle between the ith eigenvector given by the metric to be maximized and the first i eigenvectors given by the metric to be minimized is close to zero, our results are not guaranteed to be correct. Several properties of such models are also presented. For illustration, we concentrate on the classical applications of classification and feature extraction. We also show how we can use our findings to design more robust algorithms. We conclude with a discussion on the broader impacts of our results.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 12 )