By Topic

Matching shape sequences in video with applications in human movement analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Veeraraghavan A ; Center for Autom. Res., Maryland Univ., College Park, MD, USA ; A. K. Roy-Chowdhury ; R. Chellappa

We present an approach for comparing two sequences of deforming shapes using both parametric models and nonparametric methods. In our approach, Kendall's definition of shape is used for feature extraction. Since the shape feature rests on a non-Euclidean manifold, we propose parametric models like the autoregressive model and autoregressive moving average model on the tangent space and demonstrate the ability of these models to capture the nature of shape deformations using experiments on gait-based human recognition. The nonparametric model is based on dynamic time-warping. We suggest a modification of the dynamic time-warping algorithm to include the nature of the non-Euclidean space in which the shape deformations take place. We also show the efficacy of this algorithm by its application to gait-based human recognition. We exploit the shape deformations of a person's silhouette as a discriminating feature and provide recognition results using the nonparametric model. Our analysis leads to some interesting observations on the role of shape and kinematics in automated gait-based person authentication.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 12 )