Cart (Loading....) | Create Account
Close category search window
 

Clustering ensembles: models of consensus and weak partitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Topchy, A. ; Nielsen Media Res., Oldsmar, FL, USA ; Jain, A.K. ; Punch, W.

Clustering ensembles have emerged as a powerful method for improving both the robustness as well as the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial, or statistical perspectives. This study extends previous research on clustering ensembles in several respects. First, we introduce a unified representation for multiple clusterings and formulate the corresponding categorical clustering problem. Second, we propose a probabilistic model of consensus using a finite mixture of multinomial distributions in a space of clusterings. A combined partition is found as a solution to the corresponding maximum-likelihood problem using the EM algorithm. Third, we define a new consensus function that is related to the classical intraclass variance criterion using the generalized mutual information definition. Finally, we demonstrate the efficacy of combining partitions generated by weak clustering algorithms that use data projections and random data splits. A simple explanatory model is offered for the behavior of combinations of such weak clustering components. Combination accuracy is analyzed as a function of several parameters that control the power and resolution of component partitions as well as the number of partitions. We also analyze clustering ensembles with incomplete information and the effect of missing cluster labels on the quality of overall consensus. Experimental results demonstrate the effectiveness of the proposed methods on several real-world data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.