By Topic

Application resource requirement estimation in a parallel-pipeline model of execution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuntraruk, J. ; Math. Stat. & Comput. Dept., UbonRatchathani Univ., Thailand ; Pottenger, W.M. ; Ross, A.M.

We propose a massively parallel framework termed a parallel-pipeline model of execution that can be employed on a homogeneous computational cluster. We show that speedups near-linear in the number of processors are achievable for applications involving reduction operations based on a novel, parallel-pipeline model of execution. As computational clusters become viable alternative platforms for solving large computational problems, the research community acknowledges that the cluster environment can be used effectively when adaptive resource management is employed. This requires the ability to estimate the resource requirements of applications before scheduling decisions are made. We propose a resource estimation model for applications executed in the parallel-pipeline model of execution. We develop a performance model that predicts the resource utilization (i.e., computation and communication complexity) for applications executing under the parallel-pipeline model on a homogeneous computational cluster. This performance prediction model can provide information to a cluster scheduler.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 12 )