Cart (Loading....) | Create Account
Close category search window
 

Replication cache: a small fully associative cache to improve data cache reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wei Zhang ; Dept. of Electr. & Comput. Eng., Southern Illinois Univ., Carbondale, IL, USA

Soft error conscious cache design has become increasingly crucial for reliable computing. The widely used ECC or parity-based integrity checking techniques have only limited capability in error detection and correction, while incurring nontrivial penalty in area or performance. The N modular redundancy (NMR) scheme is too costly for processors with stringent cost constraints. This paper proposes a cost-effective solution to enhance data reliability significantly with minimum impact on performance. The idea is to add a small fully associative cache to store the replica of every write to the L1 data cache. Due to data locality and its full associativity, the replication cache can be kept small while providing replicas for a significant fraction of read hits in L1, which can be used to enhance data integrity against soft errors. Our experiments show that a replication cache with eight blocks can provide replicas for 97.3 percent of read hits in L1 on average. Moreover, compared with the recently proposed in-cache replication schemes, the replication cache is more energy efficient, while improving the data integrity against soft errors significantly.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.