Cart (Loading....) | Create Account
Close category search window

Energy scalable universal hashing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaps, J. ; Electr. & Comput. Eng. Dept., Worcester Polytech. Inst., MA, USA ; Yuksel, K. ; Sunar, B.

Message authentication codes (MACs) are valuable tools for ensuring the integrity of messages. MACs may be built around a universal hash function (NH) which was explored in the construction of UMAC. In this paper, we use a variation on NH called WH. WH reaches optimally in the sense that it is universal with half the hash length of NH and it achieves perfect serialization in hardware implementation. We achieved substantial power savings of up to 59 percent and a speedup of up to 7.4 times over NH. Moreover, we show how the technique of multihashing and the Toeplitz approach can be combined to reduce the power and energy consumption even further while maintaining the same security level with a very slight increase in the amount of the key material. At low frequencies, the power and energy reductions are achieved simultaneously while keeping the hashing time constant. We developed formulae for estimation of the leakage and dynamic power consumptions as well as the energy consumption based on the frequency and the Toeplitz parameter t. We introduce a powerful method for scaling WH according to specific energy and power consumption requirements. Our implementation of WH-16 consumes only 2.95 μW at 500 kHz. It can therefore be integrated into a self-powered device.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.