By Topic

Constrained neural network based identification of harmonic sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. K. Hartana ; General Electric Co., Schenectady, NY, USA ; G. G. Richards

Constrained neural nets are used to identify the location and magnitude of harmonic sources in power systems with nonlinear loads, in situations where sufficient direct measurement data are not available. This approach permits measurement of harmonics with relatively few permanent harmonic measuring instruments. A simulated power distribution system is used to show that neural nets can be trained to use available measurements to estimate harmonic sources. These estimates are constrained to conform to the available direct harmonic measurements, which improve their accuracy. It is shown that suspected harmonic sources can be identified and measured by a process of hypothesis testing.<>

Published in:

Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE

Date of Conference:

7-12 Oct. 1990