By Topic

A recommender for targeted advertisement of unsought products in e-commerce

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Koung-Lung Lin ; Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan ; Chun-Nan Hsu ; Han-Shen Huang ; Chun-Nan Hsu

Recommender systems are a powerful tool for promoting sales in electronic commerce. An effective shopping recommender system can help boost the retailer's sales by reminding customers to purchase additional products originally not on their shopping lists. Existing recommender systems are designed to identify the top selling items, also called hot sellers, based on the store's sales data and customer purchase behaviors. It turns out that timely reminders for unsought products, which are cold sellers that the consumer either does not know about or does not normally think of buying, present great opportunities for significant sales growth. In this paper, we propose the framework and process of a recommender system that identifies potential customers of unsought products using boosting-SVM. The empirical results show that the proposed approach provides a promising solution to targeted advertisement for unsought products in an e-commerce environment.

Published in:

E-Commerce Technology, 2005. CEC 2005. Seventh IEEE International Conference on

Date of Conference:

19-22 July 2005