By Topic

Coding for the feedback Gel'fand-Pinsker channel and the feedforward Wyner-Ziv source

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Merhav, N. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa ; Weissman, T.

We consider both channel coding and source coding, with perfect past feedback/feedforward, in the presence of side information. It is first observed that feedback does not increase the capacity of the Gelfand-Pinsker channel, nor does feedforward improve the achievable rate-distortion performance in the Wyner-Ziv problem. We then focus on the Gaussian case showing that, as in the absence of side information, feedback/feedforward allows to efficiently attain the respective performance limits. In particular, we derive schemes via variations on that of Schalkwijk and Kailath. These variants, which are as simple as their origin and require no binning, are shown to achieve, respectively, the capacity of Costa's channel, and the Wyner-Ziv rate distortion function. Finally, we consider the finite-alphabet setting and derive schemes for both the channel and the source coding problems that attain the fundamental limits, using variations on schemes of Ahlswede and Ooi and Wornell, and of Martinian and Wornell, respectively

Published in:

Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on

Date of Conference:

4-9 Sept. 2005