By Topic

A group-theoretic approach to the WSSUS pulse design problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jung, P. ; Sino-German Mobile Commun. Inst. ; Wunder, G.

We consider the pulse design problem in multicarrier transmission where the pulse shapes are adapted to the second order statistics of the WSSUS channel. Even though the problem has been addressed by many authors analytical insights are rather limited. First we show that the problem is equivalent to the pure state channel fidelity in quantum information theory. Next we present a new approach where the original optimization functional is related to an eigenvalue problem for a pseudo differential operator by utilizing unitary representations of the Weyl-Heisenberg group. A local approximation of the operator for underspread channels is derived which implicitly covers the concepts of pulse scaling and optimal phase space displacement. The problem is reformulated as a differential equation and the optimal pulses occur as eigenstates of the harmonic oscillator Hamiltonian. Furthermore this operator-algebraic approach is extended to provide exact solutions for different classes of scattering environments

Published in:

Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on

Date of Conference:

4-9 Sept. 2005