By Topic

Cooperative diversity in wireless relay networks with multiple-antenna nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yindi Jing ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA ; Hassibi, B.

In [1], the idea of distributed space-time coding was proposed to achieve a degree of cooperative diversity in a wireless relay network. In particular, for a relay network with a single-antenna transmitter and receiver and R single-antenna relays, it was shown that the pairwise error probability (PEP) decays as (log P/P)R where P is the total transmit power. In this paper, we extend the results to wireless relay networks where the transmitter, receiver, and/or relays may have multiple antennas. Assuming that the transmitter has M antennas, the receiver has N antennas, the sum of all the antennas at the relay nodes is R, and the coherence interval is long enough, we show that the PEP behaves as (1/P)min{M,N}R, if M ne N, and (log1M/P/P)MR, if M = N. Therefore, for the case of M ne N, distributed space-time coding has the same PEP performance as a multiple-antenna system with min{M, N}R transmit and a single receive antenna. For the case of M = N, the penalty on the PEP compared to a multiple-antenna system is a log1M/ P factor, which is negligible at high SNR. We also show that for a fixed total transmit power across the entire network, the optimal power allocation is for the transmitter to expend half the power and for the relays to share the other half with the power used by each relay being proportional to the number of antennas it has

Published in:

Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on

Date of Conference:

4-9 Sept. 2005