By Topic

Feedback capacity of the first-order moving average Gaussian channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Young-Han Kim ; Inf. Syst. Lab., Stanford Univ., CA

The feedback capacity of the stationary Gaussian additive noise channel has been open, except for the case where the noise is white. Here we obtain the closed-form feedback capacity of the first-order moving average additive Gaussian noise channel. Specifically, the channel is given by Yi = Xi + Zi, i = 1,2,..., where the input {Xi} satisfies average power constraint and the noise {Zi} is a first-order moving average Gaussian process defined by Zi = alphaUi-1 + U i, |alpha| les 1, with white Gaussian innovation {Ui }i=0 infin. We show that the feedback capacity of this channel is -log x0, where x0 is the unique positive root of the equation rhox2 = (1 - x2)(1 - |alpha|x)2, and rho is the ratio of the average input power per transmission to the variance of the noise innovation Ui. The optimal coding scheme parallels the simple linear signalling scheme by Schalkwijk and Kailath for the additive white Gaussian noise channel; the transmitter sends a real-valued information-bearing signal at the beginning of communication, then subsequently processes the feedback noise process through a simple linear stationary first-order autoregressive filter to help the receiver recover the information by maximum likelihood decoding. The resulting probability of error decays doubly exponentially in the duration of the communication. This feedback capacity of the first-order moving average Gaussian channel is very similar in form to the best known achievable rate for the first-order autoregressive Gaussian noise channel studied by Butman, Wolfowitz, and Tiernan, although the optimality of the latter is yet to be established

Published in:

Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on

Date of Conference:

4-9 Sept. 2005