By Topic

Defocus-aware leakage estimation and control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kahng, A.B. ; CSE & ECE Departments, UC San Diego, USA ; Muddu, S. ; Sharma, P.

Leakage power is one of the most critical issues for ultra-deep sub-micron technology. Subthreshold leakage depends exponentially on linewidth, and consequently variation in linewidth translates to a large leakage variation. A significant fraction of variation in linewidth occurs due to systematic variations involving focus and pitch. In this paper we propose a new leakage estimation methodology that accounts for focus-dependent variation in linewidth. The ideas presented in this paper significantly improve leakage estimation and can be used in existing leakage reduction techniques to improve their efficacy. We modify the previously proposed gate length biasing technique of [P. Gupta, A. B. Kahng, P. Sharma and D. Sylvester (2004)] to consider systematic variations in linewidth and further reduce leakage power. Our method reduces the leakage spread between worst and best process corners by up to 62%. Defocus awareness improves leakage reduction from gate length biasing by up to 7%.

Published in:

Low Power Electronics and Design, 2005. ISLPED '05. Proceedings of the 2005 International Symposium on

Date of Conference:

8-10 Aug. 2005