By Topic

Exponential error bounds for algebraic soft-decision decoding of Reed-Solomon codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ratnakar, N. ; Coordinated Sci. Lab., Univ. of Illinois, Urbana, IL, USA ; Koetter, R.

Algebraic soft-decision decoding of Reed-Solomon codes is a promising technique for exploiting reliability information in the decoding process. While the algorithmic aspects of the decoding algorithm are reasonably well understood and, in particular, complexity is polynomially bounded in the length of the code, the performance analysis has relied almost entirely on simulation results. Analytical exponential error bounds that can be used to tightly bound the performance of Reed-Solomon codes under algebraic soft-decision decoding are presented in this paper. The analysis is used in a number of examples and several extensions and consequences of the results are presented.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 11 )