By Topic

Analysis of low-density parity-check codes for the Gilbert-Elliott channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eckford, A.W. ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Kschischang, F.R. ; Pasupathy, S.

Density evolution analysis of low-density parity-check (LDPC) codes in memoryless channels is extended to the Gilbert-Elliott (GE) channel, which is a special case of a large class of channels with hidden Markov memory. In a procedure referred to as estimation decoding, the sum-product algorithm (SPA) is used to perform LDPC decoding jointly with channel-state detection. Density evolution results show (and simulation results confirm) that such decoders provide a significantly enlarged region of successful decoding within the GE parameter space, compared with decoders that do not exploit the channel memory. By considering a variety of ways in which a GE channel may be degraded, it is shown how knowledge of the decoding behavior at a single point of the GE parameter space may be extended to a larger region within the space, thereby mitigating the large complexity needed in using density evolution to explore the parameter space point-by-point. Using the GE channel as a straightforward example, we conclude that analysis of estimation decoding for LDPC codes is feasible in channels with memory, and that such analysis shows large potential gains.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 11 )