By Topic

An analysis of the block error probability performance of iterative decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lentmaier, M. ; Dept. of Electr. Eng., Notre Dame Univ., IN, USA ; Truhachev, D.V. ; Zigangirov, K.S. ; Costello, D.J.

Asymptotic iterative decoding performance is analyzed for several classes of iteratively decodable codes when the block length of the codes N and the number of iterations I go to infinity. Three classes of codes are considered. These are Gallager's regular low-density parity-check (LDPC) codes, Tanner's generalized LDPC (GLDPC) codes, and the turbo codes due to Berrou et al. It is proved that there exist codes in these classes and iterative decoding algorithms for these codes for which not only the bit error probability Pb, but also the block (frame) error probability PB, goes to zero as N and I go to infinity.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 11 )