By Topic

A Neyman-Pearson approach to statistical learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Scott, C. ; Dept. of Stat., Rice Univ., Houston, TX, USA ; Nowak, R.

The Neyman-Pearson (NP) approach to hypothesis testing is useful in situations where different types of error have different consequences or a priori probabilities are unknown. For any α>0, the NP lemma specifies the most powerful test of size α, but assumes the distributions for each hypothesis are known or (in some cases) the likelihood ratio is monotonic in an unknown parameter. This paper investigates an extension of NP theory to situations in which one has no knowledge of the underlying distributions except for a collection of independent and identically distributed (i.i.d.) training examples from each hypothesis. Building on a "fundamental lemma" of Cannon et al., we demonstrate that several concepts from statistical learning theory have counterparts in the NP context. Specifically, we consider constrained versions of empirical risk minimization (NP-ERM) and structural risk minimization (NP-SRM), and prove performance guarantees for both. General conditions are given under which NP-SRM leads to strong universal consistency. We also apply NP-SRM to (dyadic) decision trees to derive rates of convergence. Finally, we present explicit algorithms to implement NP-SRM for histograms and dyadic decision trees.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 11 )