By Topic

A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Blackwell, W.J. ; Lincoln Lab., Massachusetts Inst. of Technol., Lexington, MA, USA

A novel statistical method for the retrieval of atmospheric temperature and moisture profiles has been developed and evaluated with simulated clear-air and observed partially cloudy sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). The algorithm is implemented in two stages. First, a projected principal components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Second, a multilayer feedforward neural network (NN) is used to estimate the desired geophysical parameters from the PPCs. For the first time, NN temperature and moisture retrievals are presented using actual microwave and hyperspectral infrared observations of cloudy atmospheres, over both ocean and land (with variable terrain elevation), and at all sensor scan angles. The performance of the NN retrieval method (henceforth referred to as the PPC/NN method) was evaluated using global Earth Observing System Aqua orbits colocated with European Center for Medium-range Weather Forecasting fields for seven days throughout 2002 and 2003. Over 350,000 partially cloudy footprints were used in the study, and retrieval performance was compared with the AIRS Science Team Level-2 retrieval algorithm (version 3). Performance compares favorably with that obtained with simulated clear-air observations from the NOAA88b radiosonde set of approximately 7500 profiles. The PPC/NN method requires significantly less computation than traditional variational retrieval methods, while achieving comparable performance.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 11 )