By Topic

Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nakamura, K. ; Nat. Inst. of Inf. & Commun. Technol., Tokyo, Japan ; Wakabayashi, H. ; Naoki, K. ; Nishio, F.
more authors

To investigate the possibilities of using dual-frequency, multipolarization synthetic aperture radar (SAR) data to monitor sea ice, we derived the relationship between various polarization characteristics and the physical parameters of sea ice. We discuss the frequency and polarization characteristics of the backscattering coefficients of sea ice and then characterize its thickness by comparing the corresponding backscattering coefficient for each polarization with the physical parameters of the ice. We first propose a methodology for classifying sea-ice types by using a polarimetric decomposition technique, before comparing an estimation of the sea-ice thickness with the corresponding dual-frequency, multipolarization SAR data. We utilized the backscattering ratio to estimate the thickness of the sea ice. This ratio canceled the effect of roughness on the backscattering. The method was validated using Pi-SAR (polarimetric and interferometric airborne SAR) observation data obtained at ground-truth sites.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 11 )