Cart (Loading....) | Create Account
Close category search window
 

Tunneling injection quantum-dot lasers with polarization-dependent photon-mediated carrier redistribution and gain narrowing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Jungho Kim ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Kondratko, Piotr Konrad ; Chuang, Shun Lien ; Walter, Gabriel
more authors

A theoretical and experimental study of a particular transverse-electric (TE) mode lasing mechanism of a tunneling injection InP quantum-dot (QD) laser is reported. In the experiment, the TE mode lasing action takes place at the first excited state of InP biaxially compressively strained QDs. This QD state is coupled to the ground state of two tensile-strained InGaP quantum wells (QWs) although the tensile-strained QW structure favors the transverse-magnetic (TM) polarization light emission. The measured TE and TM modal gain spectra show a typical QW gain evolution behavior at low injection currents, which can be theoretically modeled by the quasi-equilibrium of carrier distribution. When the injection current is increased near threshold, a TE gain narrowing and a simultaneous TM gain pinning are observed in the measured modal gain spectra, which cannot be explained via the quasi-equilibrium model. We propose a polarization-dependent photon-mediated carrier redistribution in the QD-coupled-QW structure to explain this TE and TM gain evolution behavior. When the injection current is just below threshold, the strong carrier depletion via stimulated emission due to coupling between the InP QD and InGaP QW states plays an important role in carrier redistribution, which depends on the optical transition energy and polarization. This concept of the polarization-dependent photon-mediated carrier redistribution explains the TE gain narrowing and TM gain pinning behavior. In addition, a coupled rate equation model is established, and the calculated polarization power ratio based on the coupled rate equations explains the experimental observation.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:41 ,  Issue: 11 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.