Cart (Loading....) | Create Account
Close category search window
 

C-fuzzy decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pedrycz, W. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, Alta., Canada ; Sosnowski, Z.A.

This paper introduces a concept and design of decision trees based on information granules - multivariable entities characterized by high homogeneity (low variability). As such granules are developed via fuzzy clustering and play a pivotal role in the growth of the decision trees, they will be referred to as C-fuzzy decision trees. In contrast with "standard" decision trees in which one variable (feature) is considered at a time, this form of decision trees involves all variables that are considered at each node of the tree. Obviously, this gives rise to a completely new geometry of the partition of the feature space that is quite different from the guillotine cuts implemented by standard decision trees. The growth of the C-decision tree is realized by expanding a node of tree characterized by the highest variability of the information granule residing there. This paper shows how the tree is grown depending on some additional node expansion criteria such as cardinality (number of data) at a given node and a level of structural dependencies (structurability) of data existing there. A series of experiments is reported using both synthetic and machine learning data sets. The results are compared with those produced by the "standard" version of the decision tree (namely, C4.5).

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.