By Topic

Automatic system for quality-based classification of marble textures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Martinez-Alajarin, J. ; Dept. of Electron., Comput. Technol. & Projects, Univ. Politecnica de Cartagena, Spain ; Luis-Delgado, J.D. ; Tomas-Balibrea, L.M.

In this paper, we present an automatic system and algorithms for the classification of marble slabs into different groups in real time in production line, according to slabs quality. The application of the system is aimed at the marble industry, in order to automate and improve the manual classification process of marble slabs carried out at present. The system consists of a mechatronic prototype, which houses all the required physical components for the acquisition of marble slabs images in suitable light conditions, and computational algorithms, which are used to analyze the color texture of the marble surfaces and classify them into their corresponding group. In order to evaluate the color representation influence on the image analysis, four color spaces have been tested: RGB, XYZ, YIQ, and K-L. After the texture analysis performed with the sum and difference histograms algorithm, a feature extraction process has been implemented with principal component analysis. Finally, a multilayer perceptron neural network trained with the backpropagation algorithm with adaptive learning rate is used to classify the marble slabs in three categories, according to their quality. The results (successful classification rate of 98.9%) show very high performance compared with the traditional (manual) system.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 4 )