Cart (Loading....) | Create Account
Close category search window

Separating core and noncore knowledge: an application of neural network rule extraction to a cross-national study of brand image perception

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Setiono, R. ; Sch. of Comput., Nat. Univ. of Singapore, Singapore ; Pan, S.L. ; Ming-Huei Hsieh ; Azcarraga, A.P.

Recent advances in algorithms that extract rules from artificial neural networks make it feasible to use neural networks as a tool for acquiring knowledge hidden in the data. Findings are reported from the use of such algorithms to separate core and noncore knowledge in a cross-national study of automobile brand image perception. Respondents from five Western European countries have been asked to associate individual and corporate brand associations for a number of well-known automobile brands. Knowledge, expressed as concise and accurate rules that distinguish between the respondents' perceptions of German and Japanese brands, is extracted from trained neural networks. This paper explains how both core knowledge, which captures the perceptions shared by the respondents in all countries, and country-specific noncore knowledge can be acquired and differentiated by a proposed two-step approach to train and extract rules from a multi-neural network system. The experimental results show that, in addition to providing a better understanding of the differences and similarities in the brand image perceptions of consumers in various countries, the proposed approach also yields better predictive accuracy than a decision tree method.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

Nov. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.