By Topic

Probability distribution of signal arrival times using Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bhardwaj, S. ; Arizona State Univ., Tempe, AZ, USA ; Vrudhula, S. ; Blaauw, D.

This paper presents a new method based on Bayesian networks (BNs) for computing the exact probability distribution of the delay of a circuit. The method is based on BNs, which allows an efficient means to factor the joint probability distributions over variables in a circuit graph. The space complexity of the method presented here is O(m|C|), where m is the number of distinct values taken by each delay variable and |C| is the number of variables in the largest clique. The maximum clique size present in a BN is shown to be much smaller than the circuit size. For large circuits, where it is not practically feasible to compute the exact distribution, methods to reduce the problem size and get a lower bound on the exact distribution are presented. Comparison of the results with Monte Carlo simulations shows that we can reduce the size of the circuit by as much as 89% while maintaining the maximum difference between the predicted and simulated 3σ values to be less than 3%.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 11 )