Cart (Loading....) | Create Account
Close category search window

Modeling delay and noise in arbitrarily coupled RC trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pamunuwa, D. ; Dept. of Eng., Univ. of Lancaster, UK ; Elassaad, S. ; Tenhunen, H.

Closed-form equations for second-order transfer functions of general arbitrarily coupled resistance-capacitance (RC) trees with multiple drivers are reported. The models allow precise delay and noise calculations for systems of coupled interconnects with guaranteed stability and represent the minimum complexity associated with this class of circuits. Their accuracy is extensively compared against other relevant models and is found to be better or comparable to more expensive models. All results are derived from a theoretical approach, and their physical basis is examined. The simplicity, accuracy, and generality of the models make them suitable for use in early signal integrity analyses of complex systems and incremental physical optimization.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 11 )

Date of Publication:

Nov. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.