Cart (Loading....) | Create Account
Close category search window

Optical network packet error rate due to physical layer coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Moore, A.W. ; Comput. Lab., Univ. of Cambridge, UK ; James, L.B. ; Glick, M. ; Wonfor, A.
more authors

A physical layer coding scheme is designed to make optimal use of the available physical link, providing functionality to higher components in the network stack. This paper presents results of an exploration of the errors observed when an optical gigabit Ethernet link is subject to attenuation. The results show that some data symbols suffer from a far higher probability of error than others. This effect is caused by an interaction between the physical layer and the 8B/10B block coding scheme. The authors illustrate how the application of a scrambler, performing data whitening, restores content-independent uniformity of packet loss. They also note the implications of their work for other (N, K) block-coded systems and discuss how this effect will manifest itself in a scrambler-based system. A conjecture is made that there is a need to build converged systems with the combinations of physical, data link, and network layers optimized to interact correctly. In the meantime, what will become increasingly necessary is both an identification of the potential for failure and the need to plan around it.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.