By Topic

Scalable performance evaluation of a hybrid optical switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hai Le Vu ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Vic., Australia ; Zalesky, A. ; Wong, E.W.M. ; Rosberg, Z.
more authors

This paper provides new loss models for a hybrid optical switch (HOS) combining optical circuit switching (OCS) and optical burst switching (OBS). Exact blocking probabilities are computed when 1) no priority is given to either circuits or bursts and 2) circuits are given preemptive priority over bursts. Because it is difficult to exactly compute in realistic scenarios, computationally scalable approximations are derived for the blocking probability. The sensitivity of the analytical results to burst length and circuit holding-time distributions is quantified by simulation. It is demonstrated how the proposed approximations can be used for multiplexing-gain evaluation of a hybrid switch. In addition, the extension of the proposed single-node model to a network model composed of OCS, OBS, and hybrid switches is outlined.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 10 )