By Topic

Transmission of optical communication signals by distributed parametric amplification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kalogerakis, Georgios ; Electr. Eng. Dept., Stanford Univ., CA, USA ; Marhic, M.E. ; Wong, Kenneth Kin-Yip ; Kazovsky, Leonid G.

For the first time, to the authors' knowledge, distributed parametric amplification (DPA), i.e., the use of a transmission fiber itself for parametric amplification of communication signals is proposed and demonstrated. To account for the inevitable fiber loss, solutions were derived for the distributed amplifier, with either one or two pumps: They are obtained in terms of confluent hypergeometric functions. Low-penalty DPA of a 10-Gb/s nonreturn-to-zero (NRZ) signal over a 75-km dispersion-shifted fiber (DSF), is demonstrated by using only 66.5 mW of pump power. Three adjacent channels have been simultaneously transmitted, with little penalty due to nonlinear crosstalk. It is experimentally verified that DPA requires less pump power than distributed Raman amplification (DRA), for similar power penalties.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 10 )