By Topic

A Combined Navigation Strategy by a Steering Wheel and a Mouse for a Tank Rescue Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhixiao Yang ; Okayama University 3-1-1, Tsushima-Naka, Okayama-Shi, 700-8530, Japan, ; K. Ito ; K. Saijo ; K. Hirotsune
more authors

This paper applies our developed novice users oriented force feedback steering wheel interface and mouse interface to navigating a tank type rescue robot. By analyzing merits and limitation of operating each interface, we propose a combined navigation strategy by the two interfaces. The steering wheel interface consists of a force feedback steering control and a six monitors' wall. Through this interface, users can navigate the tank robot like driving cars, while watching incoming videos. It provides a daily life operation method for novice users to navigate the tank rescue robot. The steering wheel interface is efficient in exploring open areas. For complex disaster fields, this interface requires users have skillful operation experiences, which take them more attention. The mouse-screen interface consists of a mouse and a camera's view displayed in a computer screen. Through this interface, users can navigate the tank robot just by mouse clicking. Path planning and low-level controlling are realized by system automatically. The mouse-screen interface can realize exact navigation, especially needed in complex structures, without taking much attention. It gives users more time to care incoming information. The two interfaces can shift into each other at any time. The combined navigation strategy adopts merits of the two interfaces and compensates limitation of each of them. It provides an efficient operation method for novice users to navigate rescue robots

Published in:

Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on

Date of Conference:

22-26 Aug. 2004