By Topic

Fuzzy image segmentation using shape information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali, M.A. ; Gippsland Sch. of Inf. Technol., Monash Univ., Clayton, Vic., Australia ; Karmakar, G.C. ; Dooley, L.S.

Results of any clustering algorithm are highly sensitive to features that limit their generalization and hence provide a strong motivation to integrate shape information into the algorithm. Existing fuzzy shape-based clustering algorithms consider only circular and elliptical shape information and consequently do not segment well, arbitrary shaped objects. To address this issue, this paper introduces a new shape-based algorithm, called fuzzy image segmentation using shape information (FISS) by incorporating general shape information. Both qualitative and quantitative analysis proves the superiority of the new FISS algorithm compared to other well-established shape-based fuzzy clustering algorithms, including Gustafson-Kessel, ring-shaped, circular shell, c-ellipsoidal shells and elliptic ring-shaped clusters.

Published in:

Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on

Date of Conference:

6-8 July 2005