By Topic

A Multi-Modal Mixed-State Dynamic Bayesian Network for Robust Meeting Event Recognition from Disturbed Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Al-Hames ; Technische Universität München Institute for Human-Machine Communication Arcisstrasse 16, 80333 München, Germany, ; G. Rigoll

In this work we present a novel multi-modal mixed-state dynamic Bayesian network (DBN) for robust meeting event classification. The model uses information from lapel microphones, a microphone array and visual information to structure meetings into segments. Within the DBN a multi-stream hidden Markov model (HMM) is coupled with a linear dynamical system (LDS) to compensate disturbances in the data. Thereby the HMM is used as driving input for the LDS. The model can handle noise and occlusions in all channels. Experimental results on real meeting data show that the new model is highly preferable to all single-stream approaches. Compared to a baseline multi-modal early fusion HMM, the new DBN is more than 2.5%, respectively 1.5% better for clear and disturbed data, this corresponds to a relative error reduction of 17%, respectively 9%

Published in:

2005 IEEE International Conference on Multimedia and Expo

Date of Conference:

6-6 July 2005