By Topic

G1 scattered data interpolation with minimized sum of squares of principal curvatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saaban, A. ; Fac. of Quantitative Sci., Univ. Utara Malaysia, Kedah, Malaysia ; Piah, A.R.M. ; Majid, A.A. ; Chang, L.H.T.

One of the main focus of scattered data interpolation is fitting a smooth surface to a set of non-uniformly distributed data points which extends to all positions in a prescribed domain. In this paper, given a set of scattered data V = {(xi, yi), i=1,...,n} ∈ R2 over a polygonal domain and a corresponding set of real numbers {zi}i=1n, we wish to construct a surface S which has continuous varying tangent plane everywhere (G1) such that S(xi, yi) = zi. Specifically, the polynomial being considered belong to G1 quartic Bezier functions over a triangulated domain. In order to construct the surface, we need to construct the triangular mesh spanning over the unorganized set of points, V which will then have to be covered with Bezier patches with coefficients satisfying the G1 continuity between patches and the minimized sum of squares of principal curvatures. Examples are also presented to show the effectiveness of our proposed method.

Published in:

Computer Graphics, Imaging and Vision: New Trends, 2005. International Conference on

Date of Conference:

26-29 July 2005