Cart (Loading....) | Create Account
Close category search window
 

Dynamic load balancing for distributed search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Huston, L. ; Intel Res., Pittsburgh, PA, USA ; Nizhner, A. ; Pillai, P. ; Sukthankar, R.
more authors

This paper examines how computation can be mapped across the nodes of a distributed search system to effectively utilize available resources. We specifically address computationally intensive search of complex data, such as content-based retrieval of digital images or sounds, where sophisticated algorithms must be evaluated on the objects of interest. Since these problems require significant computation, we distribute the search over a collection of compute nodes, such as active storage devices, intermediate processors and host computers. A key challenge with mapping the desired computation to the available resources is that the most efficient distribution depends on several factors: relative power and number of compute nodes; network bandwidth between the compute nodes; the cost of evaluating query predicates; and the selectivity of the given query. This wide range of variables renders manual partitioning of the computation infeasible, particularly since some of the parameters (e.g., available network bandwidth) can change during the course of a search. This paper proposes several techniques for dynamic partitioning of computation, and demonstrates that they can significantly improve efficiency for distributed search applications.

Published in:

High Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE International Symposium on

Date of Conference:

24-27 July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.