Cart (Loading....) | Create Account
Close category search window
 

Hybrid IMM/SVM approach for wavelet-domain probabilistic model based texture classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, L. ; Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA ; Man, H.

The Fisher kernel method was recently proposed to incorporate probabilistic (generative) models and discriminative methods for pattern recognition. This method uses parameter derivatives of log-likelihood calculated from probabilistic model(s), Fisher scores, to generate statistical feature vectors. It is followed by discriminative classifiers such as the support vector machine (SVM) for classification. In this work, the authors study the potential of the Fisher kernel method on texture classification. A hybrid system of independent mixture model (IMM) and SVM is introduced to extract and classify statistical texture features in the wavelet-domain. Compared to existing methods that apply Bayesian classification based on wavelet domain energy signatures and stand alone IMM, the new hybrid IMM/SVM method is able to achieve superior performance. Experimental results are presented to demonstrate the effectiveness of this proposed method.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:152 ,  Issue: 6 )

Date of Publication:

9 Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.