By Topic

Linear least-square estimation algorithms involving correlated signal and noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fernandez-Alcala, R.M. ; Dept. of Stat. & Oper.s Res., Univ. of Jaen, Spain ; Navarro-Moreno, J. ; Ruiz-Molina, J.C.

Recursive algorithms are designed for the computation of the optimal linear filter and all types of predictors and smoothers of a signal vector corrupted by a white noise correlated with the signal. These algorithms are derived under both continuous and discrete time formulation of the problem. The only hypothesis imposed is that the correlation functions involved are factorizable kernels. The main contribution of this work with respect to previous studies lies in allowing correlation between the signal and the observation noise, which is useful in applications to feedback control and feedback communications. Moreover, recursive computational formulas are obtained for the error covariances associated with the above estimates.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 11 )