Cart (Loading....) | Create Account
Close category search window
 

An improved wavelet approach for finding steady-state waveforms of power electronics circuits using discrete convolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tam, K.C. ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., China ; Siu-Chung Wong ; Tse, C.K.

Due to the switching action and the presence of parasitics, waveforms arising from power electronics circuits often contain high-frequency ringings embedded in slowly varying segments. Such a feature is consistent with the localization property of wavelets which has previously been exploited for fast approximations of steady-state waveforms. This paper proposes an improved and more robust approach for calculating the wavelet coefficients, exploiting the orthogonal property of the Chebyshev polynomials. Simulation results demonstrate the effectiveness of the new algorithm.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:52 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.