By Topic

The contribution of motor unit pairs to the correlation functions computed from surface myoelectric signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. A. Gonzalez-Cueto ; Dept. of Electr. & Comput. Eng., Dalhousie Univ., Halifax, NS, Canada ; Z. Erim

The contribution of motor unit action potential trains (MUAPT) of distinct motor units (MU) to the crosscorrelation function between myoelectric signals (MES) recorded at the skin surface is studied. In specific, the significance of the correlation between the firing activity of concurrently active MUs (which results in cross-terms in the overall correlation function) is compared to the representation obtained using the contributions of single MUs at each recording site (auto-terms). A model for the generation of surface MUAPs is combined with the generation of MU firing statistics in order to obtain surface MUAPTs. MU firing statistics are simulated to incorporate MU synchronization levels reported in the literature. Alternatively, experimental firing statistics are fed to the model generating the MUAPTs. The contribution of individual MU pairs to the global myoelectric signal correlation function is assessed. Results indicate that the cross-terms from different MUs decrease steadily contributing very little to the overall correlation for record lengths as short as 30 s. Thus, the error expected when computing the crosscorrelation function between two channels of MES as the superposition of the auto-terms contributed by single MUs (i.e., ignoring the cross-terms from different MUs) is shown to be very small.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:52 ,  Issue: 11 )