By Topic

Optimized symbolic dynamics approach for the analysis of the respiratory pattern

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Caminal, P. ; ESAII Dept., Tech. Univ. of Catalonia, Barcelona, Spain ; Vallverdu, M. ; Giraldo, B. ; Benito, S.
more authors

Traditional time domain techniques of data analysis are often not sufficient to characterize the complex dynamics of respiration. In this paper, the respiratory pattern variability is analyzed using symbolic dynamics. A group of 20 patients on weaning trials from mechanical ventilation are studied at two different pressure support ventilation levels, in order to obtain respiratory volume signals with different variability. Time series of inspiratory time, expiratory time, breathing duration, fractional inspiratory time, tidal volume and mean inspiratory flow are analyzed. Two different symbol alphabets, with three and four symbols, are considered to characterize the respiratory pattern variability. Assessment of the method is made using the 40 respiratory volume signals classified using clinical criteria into two classes: low variability (LV) or high variability (HV). A discriminant analysis using single indexes from symbolic dynamics has been able to classify the respiratory volume signals with an out-of-sample accuracy of 100%.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:52 ,  Issue: 11 )