Cart (Loading....) | Create Account
Close category search window
 

360° angle sensor using spin valve materials with SAF structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dexin Wang ; NVE Corp., Eden Prairie, MN, USA ; Brown, J. ; Hazelton, T. ; Daughton, Jim

Microchips of 360° angle sensors using spin valve materials were designed, fabricated, and tested with excellent performance. The spin valve material used for the angle sensor has a structure of Ta-NiFeCo-CoFe-Cu-CoFe-Ru-CoFe-CrMnPt. External magnetic fields have little torque on the CoFe-Ru-CoFe structure up to at least 500Oe, which is the highest value available during the test. This is due to the strong antiparallel exchange coupling between the two CoFe sublayers of the same thickness via a thin layer of Ru and the resulting zero net magnetic moment. There is a sharp switching of the free layer with a low coercivity of 4 Oe along the easy axis. Both the high standoff field and small coercivity ensure that the sensor operates properly with large tolerance in mechanical assembly. The angle sensor is used stationary in combination with a disc-shaped permanent magnet attached to a rotating shaft near the sensor. The permanent magnet is magnetized in-plane, thus creating a field that is rotating with the shaft. The magnetic field from the permanent magnet forces the free layer magnetization to follow the field and rotate with it. With a fixed reference layer magnetization and an in-phase following of the free layer magnetization, the magnetoresistance is a simple cosine function of the angle between the rotating permanent magnet and the stationary sensor. A special Wheatstone-bridge with four spin valve resistors is used to compensate the thermal drift expected in application environments. One half bridge has a 90° phase delay from the other, resulting in a cosine and a sine function, in combination to uniquely determine any angular relationship between the permanent magnet and the sensor between 0 to 360°.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.