By Topic

Improvement of magnetomechanical properties of cobalt ferrite by magnetic annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lo, C.C.H. ; Ames Lab., Iowa State Univ., Ames, IA, USA ; Ring, A.P. ; Snyder, J.E. ; Jiles, D.C.

We report dramatic improvements in both magnetostriction level and strain derivative of polycrystalline cobalt ferrite as a result of magnetic annealing. Magnetostrictive cobalt ferrite composites have potential for use in advanced magnetomechanical stress and torque sensors due to their high sensitivity of magnetization to applied stresses and high levels of magnetostriction. Results show that annealing cobalt ferrite at 300°C in air for 36 h under a dc field of 318 kA/m (4 kOe) induced a uniaxial anisotropy with the easy axis being along the annealing field direction. Under hard axis applied fields, the maximum magnetostriction measured along the hard axis at room temperature increased in magnitude from -200×10-6to -252×10-6 after annealing. The maximum strain derivative (dλ/dH)max, which is related to stress sensitivity, increased from 1.5×10-9 A-1m to 3.9×10-9 A-1m. The results can be interpreted in terms of the effects of induced uniaxial anisotropy on the domain structure and magnetization processes.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 10 )