Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Flying-height reduction of magnetic-head slider due to thermal protrusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kurita, M. ; Storage Technol. Res. Center, Hitachi Ltd., Kanagawa, Japan ; Junguo Xu ; Tokuyama, M. ; Nakamoto, Kazuhiro
more authors

Both the heat generated by the current in the write coil and the rise in the surrounding temperature cause local thermal protrusion (TPR) on magnetic-head elements. Such protrusion reduces the flying height of the head slider below the design value, thus reducing the safety margin for head-disk interference. To analyze this problem, we numerically simulated the heat transfer in the head slider, the thermal deformation of the head, and the flying-height change of the slider resulting from the deformation. The parameter study shows that decreasing the thickness of the alumina base coat or increasing the size of the pole and shields can reduce the magnitude of write-current-induced thermal protrusion (W-TPR). On the other hand, a longer pole and shields increase ambient-temperature-induced protrusion (T-TPR). For W-TPR, the reduced flying height is partly compensated by increased air pressure on the air-bearing surface (ABS). However, almost the entire magnitude of T-PTR translates into flying-height reduction.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 10 )