Cart (Loading....) | Create Account
Close category search window
 

Thermal stability of magnetic tunnel junctions with new amorphous ZrAl-alloy films as the under and capping layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Choi, Chul-Min ; Div. of Mater. Sci. & Eng., Korea Univ., Seoul, South Korea ; Song, Jin-Oh ; Lee, Seong-Rae

We studied the thermal stability of new amorphous ZrAl-based magnetic tunnel junctions (MTJs) with a ZrAl-oxide barrier replacing the Ta layers traditionally used for the under and capping layers. The MTJs were compared with similar conventional MTJs (Ta-based MTJ with Al-oxide). After annealing at various temperatures up to 450°C, the ZrAl-based MTJs still had a significant tunnel magnetoresistance signal of nearly 21%. The thermal stability of amorphous ZrAl-based and conventional Ta-based MTJs differs dramatically, mainly because of the different microstructural evolution. The noncrystalline ZrAl-alloy film had superior surface uniformity and an induced microstructure that resisted interdiffusion, with dense, equiaxed grains making up the upper stacks' films. By contrast, the conventional Ta-based MTJ had a broad columnar structure with less dense boundaries, which act as a source of interdiffusion, resulting in barrier deformation at elevated temperatures.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.