By Topic

Vertical spinal electronic device with large room temperature magnetoresistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
E. Ahmad ; Dept. of Electron., York Univ., UK ; A. Valavanis ; J. S. Claydon ; Y. X. Lu
more authors

We report experimental transport measurements of a vertical hybrid ferromagnetic (FM)/III-V semiconductor (SC)/ferromagnetic(FM) type structure, i.e., Cr(20ML)/Co(15ML)/GaAs(50 nm, n-type)/Al0.3Ga0.7As(200 nm, n-type)/FeNi(30 nm). The current-voltage (I-V) characteristics reveal Schottky/tunneling type behavior in the direction of FeNi/Semiconductor/Co and observed to be dependent on external magnetic field. The magnetoresistance (MR) behavior shows a strong dependence on the measured current and field. At low fields no significant change in MR has been observed with increasing current. However, at high fields the MR initially increases with increasing current and becomes stable beyond a critical current of 10 μA. A maximum of 12% change in the MR has been observed at room temperature, which is far larger than that of the conventional AMR effect. This property of the device could be utilized as field sensors or magnetic logic devices.

Published in:

IEEE Transactions on Magnetics  (Volume:41 ,  Issue: 10 )