By Topic

Online trajectory planning of robot arms for interception of fast maneuvering object under torque and velocity constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongkyoung Chwa ; Dept. of Electr. & Comput. Eng., Ajou Univ., Suwon, South Korea ; Junho Kang ; Jin-Young Choi

This paper presents a novel approach to an online trajectory planning of robot arms for the interception of a fast-maneuvering object under torque and velocity constraints. A body axis is newly introduced as a trajectory-planning coordinate in order to meet the position and the velocity matching conditions for a smooth grasp of the fast-maneuvering object. Using the position of the object and the end-effector in the inertia axis, the acceleration commands are generated in the X-, Y-, and Z-directions of the body axis and the acceleration commands are modified considering the torque and the velocity constraints. The trajectory planning in the X-direction becomes the speed planning to achieve the maximum speed, whereas the trajectory planning in the Y- and Z-directions becomes the direction planning where a missile-guidance algorithm is employed to intercept the maneuvering object. Finally, the acceleration commands in the body axis are transformed into the angle commands of the end-effector in the joint axis, which is used as the actual trajectory commands in robot arms.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:35 ,  Issue: 6 )