By Topic

Vacuum circuit breaker current-zero phenomena

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
E. P. A. van Lanen ; Electr. Power Syst. Lab., Delft Univ. of Technol., Netherlands ; M. Popov ; L. van der Sluis ; R. P. P. Smeets

Post-arc current phenomena that occur when interrupting high currents with vacuum circuit breakers have been investigated. High resolution measuring equipment has been used to measure both the post-arc current and the arc voltage in the current-zero region. Three examples of frequently observed phenomena are described. The first describes the phenomenon that in the event of a current-chopping, the current is zero for a short period of time just before the natural alternating current zero, but continues to flow afterwards, in the form of a post-arc current. The second and third example deal with the post-arc phenomena after currents that are much higher than the test breaker's rated short-circuit current. These examples show a low-voltage period after current-zero. Apparently, during this post-arc period, the residual plasma between the breaker's contacts conduct well. In addition to the voltage-zero period, the voltage trace in the third example also shows evidence of current-chopping. This means that the plasma conducts poorly just before current-zero, but conducts well immediately afterwards. The post-arc current model of Andrews and Varey is verified with measurements.

Published in:

IEEE Transactions on Plasma Science  (Volume:33 ,  Issue: 5 )