By Topic

Physics of high-current interruption of vacuum circuit breakers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schade, E. ; ABB Switzerland Ldt., Corp. Res., Baden, Switzerland

The present state of knowledge concerning the physical phenomena of high-current interruption with vacuum interrupters (VI) is reviewed. Two arc control methods, application of externally applied axial magnetic field (AMF) or transverse magnetic field (TMF), are available to distribute the heat flux from arc to contacts homogeneously over contact surface, to avoid local overheating. AMF spreads the arc at fixed location. TMF moves the constricted arc over contact surface. Change from diffuse to constricted arcing mode results from superposition of two effects: "instability of anode sheath" and "influence of magneto-gas-dynamic", when no AMF component exists. Conditions of arc memory at current zero determine the process of current extinction and of recovery of breakdown strength to its ultimate value. Evaporation of metal vapor continues. Charge exchange between fast ions and slow vapor atoms increases the residual charge, left in the switching gap at current zero. Post arc current prolongs and increases consequently. Breakdown during recovery of dielectric strength occurs instantaneously or sporadically delayed. Behavior of breakdown is essentially determined by vapor density. Breakdown mechanism of delayed breakdown is still unresolved. Vapor density is too low to initiate breakdown alone. Lack of fundamental knowledge in combination with complexity hampers numerical treatment of arc behavior, as well as heat flux to contact during arcing and process of interruption presently, as needed for interpretation of experimental results and prediction purposes.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 5 )