By Topic

Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhongkang Lu ; Inst. for Infocomm Res., Agency for Sci. Technol. & Res., Singapore, Singapore ; W. Lin ; X. Yang ; EePing Ong
more authors

With the fast development of visual noise-shaping related applications (visual compression, error resilience, watermarking, encryption, and display), there is an increasingly significant demand on incorporating perceptual characteristics into these applications for improved performance. In this paper, a very important mechanism of the human brain, visual attention, is introduced for visual sensitivity and visual quality evaluation. Based upon the analysis, a new numerical measure for visual attention's modulatory aftereffects, perceptual quality significance map (PQSM), is proposed. To a certain extent, the PQSM reflects the processing ability of the human brain on local visual contents statistically. The PQSM is generated with the integration of local perceptual stimuli from color contrast, texture contrast, motion, as well as cognitive features (skin color and face in this study). Experimental results with subjective viewing demonstrate the performance improvement on two PQSM-modulated visual sensitivity models and two PQSM-based visual quality metrics.

Published in:

IEEE Transactions on Image Processing  (Volume:14 ,  Issue: 11 )