By Topic

Affine-permutation invariance of 2-D shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ha, V.H.S. ; Digital Media Solutions Lab., Samsung Inf. Syst. America, Irvine, CA, USA ; Moura, J.M.F.

Shapes provide a rich set of clues on the identity and topological properties of an object. In many imaging environments, however, the same object appears to have different shapes due to distortions such as translation, rotation, reflection, scaling, or skewing. Further, the order by which the object's feature points are scanned changes, i.e., the order of the pixels may be permuted. Relating two-dimensional shapes of the same object distorted by different affine and permutation transformations is a challenge. We introduce a shape invariant that we refer to as the intrinsic shape of an object and describe an algorithm, BLAISER, to recover it. The intrinsic shape is invariant to affine-permutation distortions. It is a uniquely defined representative of the equivalence class of all affine-permutation distortions of the same object. BLAISER computes the intrinsic shape from any arbitrarily affine-permutation distorted image of the object, without prior knowledge regarding the distortions or the undistorted shape of the object. The critical step of BLAISER is the determination of the shape orientation and we provide a detailed discussion on this topic. The operations of BLAISER are based on low-order moments of the input shape and, thus, robust to error and noise. Examples illustrate the performance of the algorithm.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 11 )