Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

JBEAM: multiscale curve coding via beamlets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huo, X. ; Sch. of ISyE, Georgia Inst. of Technol., Atlanta, GA, USA ; Chen, Jihong

A multiscale coder for curves and boundaries is presented. It utilizes a multiscale structure-beamlets-that is designed primarily for linear and curvilinear features. The coder is composed of three main components: 1) a rate-distortion optimized beamlet-based representation, 2) a tree-based coding from a beamlet representation to a symbol stream, and 3) an entropy coder. This coder is named "JBEAM". Taking advantage of its multiscale property, we utilized tree-based coding to make it progressive. The derived coder has a low order of computational complexity. Simulations demonstrate an advantage over the state-of-the-art industrial standard: JBIG 2. A software package, which includes an implementation of JBEAM, is made available. Variations and potential improvements of this method will be discussed. This work may inspire more activities in this line of research, improving curve coding.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 11 )