By Topic

Empirical mode decomposition: an analytical approach for sifting process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Delechelle, E. ; Lab. Image, Signaux et Systemes Intelligents, Univ. Paris, Creteil, France ; Lemoine, Jacques ; Niang, O.

The present letter proposes an alternate procedure that can be effectively employed to replace the essentially algorithmic sifting process in Huang's empirical mode decomposition (EMD) method. Recent works have demonstrated that EMD acts essentially as a dyadic filter bank that can be compared to wavelet decompositions. However, the origin of EMD is algorithmic in nature and, hence, lacks a solid theoretical framework. The present letter proposes to resolve the major problem in the EMD method-the mean envelope detection of a signal-by a parabolic partial differential equation (PDE)-based approach. The proposed approach is validated by employing several numerical studies where the PDE-based sifting process is applied to some synthetic composite signals.

Published in:

Signal Processing Letters, IEEE  (Volume:12 ,  Issue: 11 )